Environmental Parameters And Phytoplankton Community Quality: Implications For Food Safety In Coastal Communities

  • Rahmadi Tambaru Department of Marine Science, Faculty of Marine Science and Fisheries, Universitas Hasanuddin.
Keywords: Environmental, phytoplankton, HABs, seafood safety, coastal communities

Abstract

This study aimed to evaluate environmental parameters and phytoplankton quality as well as the implications for the food safety of seafood-consuming coastal communities. The study was conducted in coastal waters of South Sulawesi, Indonesia at four sites (three stations/site): Pangkep (PK), Kuri (KR), Maros (MR), and Tallo (TL) during June, August, and October 2020. Observations formed three spatial clusters: MR1, PK; MR2, MR3, TL; KR (92.5 % similarity), and two temporal clusters: June 2020; August and October 2020 (87.9 % similarity). PCA showed parameters most strongly characterizing TL, KR, and MR (except MR1) were high levels of salinity, nitrate, nitrite, ammonium, silicate, temperature, pH, and abundance of  both phytoplankton that can form harmful algal blooms (HABs) and non-HAB forming phytoplankton (non-HABs), with low current velocity. PK was characterized by high current velocity, non-HABs, orthophosphate, ammonium, nitrite, and turbidity with low nitrate and HABs. Main characterizing parameters in the temporal PCA were high current velocity and HABs with low orthophosphate in June 2020; high nitrate, ammonium, orthophosphate, and non-HABs with even lower HABs in August 2020; high turbidity, temperature, and salinity with low pH, nitrite, silicate, and HABs in October 2020. Current velocity (low at TL, KR, MR and high at PK) influenced both non-HABs and HABs. The results indicate that faster currents may have impeded HABs development so that the phytoplankton quality was still good. Therefore, the fish from these waters can be considered safe for human consumption, thereby contributing to maintaining the health of coastal communities.

References

Abdelfattah, M. A. (2021). Climate Change Impact on Water Resources and Food Security in Egypt and Possible Adaptive Measures. Emerging Challenges to Food Production and Security in Asia, Middle East, and Africa, 267–291. URL: https://link.springer.com/chapter/10.1007/978-3-030-72987-5_10

Abo-Taleb, H. (2019). Importance of Plankton to Fish Community. Biological Research in Aquatic Science, May. https://doi.org/10.5772/intechopen.85769. URL: https://books.google.co.id/books?hl=id&lr=&id=snH8DwAAQBAJ&oi=fnd&pg=PA83&dq=Importance+of+Plankton

Adyasari, D., Pratama, M. A., Teguh, N. A., Sabdaningsih, A., Kusumaningtyas, M. A. and Dimova, N. (2021). Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Marine Pollution Bulletin, 171, 112689. URL: https://www.sciencedirect.com/science/article/abs/pii/S0025326X21007232

Ahmed, A., Ghosh, P. K., Hasan, M. and Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a south-western coastal area of Bangladesh. Environmental Monitoring and Assessment, 192(4), 1–15. URL: https://link.springer.com/article/10.1007/s10661-020-8227-0

Andrews, N., Bennett, N. J., Le Billon, P., Green, S. J., Cisneros-Montemayor, A. M., Amongin, S., Gray, N. J. and Sumaila, U. R. (2021). Oil, fisheries and coastal communities: A review of impacts on the environment, livelihoods, space and governance. Energy Research & Social Science, 75, 102009. URL: https://www.sciencedirect.com/science/article/pii/S221462962100102X

APHA. (1989). Standard Methods for the Examination of Water and Waste Water Including Bottom Sediment and Sludges (12th-th ed. ed.). American Public Health Associacion Inc. URL: URL: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1246373

Aslam, S., Siddiqui, G., and Kazmi, S. J. H. (2020). A preliminary study on spatial assessment using conservation metrics for intertidal oyster reefs at the Hab River mouth in Pakistan. Regional Studies in Marine Science, 33, 100956. URL: https://www.sciencedirect.com/science/article/abs/pii/S2352485518304365

Barlow, R., Lamont, T., Gibberd, M.-J., Russo, C., Airs, R., Tutt, G., Britz, K. and van den Berg, M. (2020). Phytoplankton adaptation and absorption properties in an Agulhas Current ecosystem. Deep Sea Research Part I: Oceanographic Research Papers, 157, 103209. URL: https://www.sciencedirect.com/science/article/pii/S0967063719303553

Cadier, M., Gorgues, T., Sourisseau, M., Edwards, C. A., Aumont, O., Marié, L. and Memery, L. (2017). Assessing spatial and temporal variability of phytoplankton communities’ composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 1: Biophysical control over plankton functional types succession and distribution. Journal of Marine Systems, 165, 47–68. URL: https://www.sciencedirect.com/science/article/pii/S0924796316303037

Castellani, C. and Edwards, M. (2017). Marine Plankton: A practical guide to ecology, methodology, and taxonomy. Oxford University Press. URL: https://books.google.co.id/books?hl=id&lr=&id=l3QzDwAAQBAJ&oi=fnd&pg=PP1&dq=Marine+Plankton

Chen, Z., Sun, J., Chen, D., Wang, S., Yu, H., Chen, H. and Wang, M. (2021). Effects of Ocean Currents in the Western Pacific Ocean on Net-Phytoplankton Community Compositions. Diversity, 13(9), 428. URL: https://www.mdpi.com/1424-2818/13/9/428

Cuevas, L. A., Tapia, F. J., Iriarte, J. L., González, H. E., Silva, N. and Vargas, C. A. (2019). Interplay between freshwater discharge and oceanic waters modulates phytoplankton size-structure in fjords and channel systems of the Chilean Patagonia. Progress in Oceanography, 173, 103–113. URL: https://www.sciencedirect.com/science/article/abs/pii/S0079661118301836

Gaylard, S., Waycott, M. and Lavery, P. (2020). Review of coast and marine ecosystems in temperate Australia demonstrates a wealth of ecosystem services. Frontiers in Marine Science, 7, 453. URL: https://www.frontiersin.org/articles/10.3389/fmars.2020.00453/full

Glibert, P. and Burford, M. (2017). Globally Changing Nutrient Loads and Harmful Algal Blooms: Recent Advances, New Paradigms, and Continuing Challenges. Oceanography, 30(1), 58–69. https://doi.org/10.5670/oceanog.2017.110. URL: https://www.jstor.org/stable/24897842

Glibert, P. M., Beusen, A. H. W., Harrison, J. A., Dürr, H. H., Bouwman, A. F. and Laruelle, G. G. (2018). Changing Land-, Sea-, and Airscapes: Sources of Nutrient Pollution Affecting Habitat Suitability for Harmful Algae. In P. M. Glibert, E. Berdalet, M. A. Burford, G. C. Pitcher, & M. Zhou (Eds.), Global Ecology and Oceanography of Harmful Algal Blooms (pp. 53–76). Springer International Publishing AG. URL: https://link.springer.com/chapter/10.1007/978-3-319-70069-4_4

Gopalakrishnan, T., Hasan, M. K., Haque, A. T. M. S., Jayasinghe, S. L. and Kumar, L. (2019). Sustainability of coastal agriculture under climate change. Sustainability (Switzerland), 11(24), 1–24. URL: https://doi.org/10.3390/su11247200

Häder, D.-P. and Gao, K. (2015). Interactions of anthropogenic stress factors on marine phytoplankton. Frontiers in Environmental Science, 3(MAR), 1–14. URL: https://doi.org/10.3389/fenvs.2015.00014

I Khedr, A., A Soliman, Y., F El-Sherbeny, E., A Hamed, M., A Ahmed, M. and E Goher, M. (2019). Water Quality Assessment of the northern part of Suez Gulf (Red Sea, Egypt), using Principal Component Analysis. Egyptian Journal of Aquatic Biology and Fisheries, 23(4), 527–538. URL: https://ejabf.journals.ekb.eg/article_58410.html

Istijono, B., Hakam, A. and Ophiyandri, T. (2018). INVESTIGATION OF THE EFFECTS OF PLANT VARIETY AND SOIL SEDIMENT TO THE COASTAL ABRASION. 14(44), 52–57. URL: https://geomatejournal.com/geomate/article/view/1821

Jollife, I. T. and Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). URL: https://doi.org/10.1098/rsta.2015.0202

Khoshravan, H., Naqinezhad, A., Alinejad-Tabrizi, T. and Yanina, T. (2019). Gorgan Bay environmental consequences due to the Caspian Sea rapid water level change. Caspian Journal of Environmental Sciences, 17(3), 213–226. URL: https://cjes.guilan.ac.ir/m/article_3664.html

Kuhn, A. M., Dutkiewicz, S., Jahn, O., Clayton, S., Rynearson, T. A., Mazloff, M. R. and Barton, A. D. (2019). Temporal and spatial scales of correlation in marine phytoplankton communities. Journal of Geophysical Research: Oceans, 124(12), 9417–9438. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JC015331

Li, H., Wang, J., Zhang, E., Shao, Y., Yang, L., Yang, B., Tan, Y. and Gao, T. (2022). Cumulative Effects of Physical, Chemical, and Biological Measures on Algae Growth Inhibition. Water, 14(6), 877. URL: https://www.mdpi.com/2073-4441/14/6/877

Lu, Y., Yuan, J., Lu, X., Su, C., Zhang, Y., Wang, C., Cao, X., Li, Q., Su, J., Ittekkot, V., Garbutt, R. A., Bush, S., Fletcher, S., Wagey, T., Kachur, A. and Sweijd, N. (2018). Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability. Environmental Pollution, 239(April), 670–680. URL: https://doi.org/10.1016/j.envpol.2018.04.016

Mavraganis, T., Constantina, C., Kolygas, M., Vidalis, K. and Nathanailides, C. (2020). Environmental issues of Aquaculture development. Egyptian Journal of Aquatic Biology and Fisheries, 24(2), 441–450. URL: https://ejabf.journals.ekb.eg/article_85857.html

Mehvar, S., Filatova, T., Dastgheib, A., De Ruyter van Steveninck, E. and Ranasinghe, R. (2018). Quantifying economic value of coastal ecosystem services: a review. Journal of Marine Science and Engineering, 6(1), 5. URL: https://www.mdpi.com/2077-1312/6/1/5

Melet, A., Teatini, P., Le Cozannet, G., Jamet, C., Conversi, A., Benveniste, J. and Almar, R. (2020). Earth observations for monitoring marine coastal hazards and their drivers. Surveys in Geophysics, 41(6), 1489–1534. URL: https://link.springer.com/article/10.1007/s10712-020-09594-5

Mylona, D. (2020). Marine resources and coastal communities in the Late Bronze Age southern Aegean: a seascape approach. American Journal of Archaeology, 124(2), 179–213. URL: https://www.journals.uchicago.edu/doi/abs/10.3764/aja.124.2.0179

Paczkowska, J., Brugel, S., Rowe, O., Lefébure, R., Brutemark, A. and Andersson, A. (2020). Response of coastal phytoplankton to high inflows of terrestrial matter. Frontiers in Marine Science, 7, 80. URL: https://www.frontiersin.org/articles/10.3389/fmars.2020.00080/full

Rocha, F. C., Andrade, E. M. and Lopes, F. B. (2015). Water quality index calculated from biological, physical and chemical attributes. Environmental Monitoring and Assessment, 187(1), 1–15. URL: https://link.springer.com/article/10.1007/s10661-014-4163-1

Rustiah, W., Noor, A., Maming, M., Lukman, M., Baharuddin, B. and Fitriyah, A. T. (2019). Distribution Analysis of Nitrate and Phosphate in Coastal Area: Evidence from Pangkep River, South Sulawesi. International Journal of Agriculture System, 7(1), 9–17. URL: http://pasca.unhas.ac.id/ojs/index.php/ijas/article/view/1835

Sarkar, S. K. (2018). Marine algal bloom: Characteristics, causes and climate change impacts. In Marine Algal Bloom: Characteristics, Causes and Climate Change Impacts. https://doi.org/10.1007/978-981-10-8261-0. URL: https://link.springer.com/book/10.1007/978-981-10-8261-0

St Pierre, K. A., Hunt, B. P. V, Tank, S. E., Giesbrecht, I., Korver, M. C., Floyd, W. C., Oliver, A. A. and Lertzman, K. P. (2021). Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean. Biogeosciences, 18(10), 3029–3052. URL: https://bg.copernicus.org/articles/18/3029/2021/bg-18-3029-2021-discussion.html

Stewart, J., Miller, M., Audo, C. and Stewart, G. (2012). Using cluster analysis to identify patterns in students’ responses to contextually different conceptual problems. Physical Review Special Topics - Physics Education Research, 8(2), 1–19. URL: https://doi.org/10.1103/PhysRevSTPER.8.020112

Strickland, J. D. H. and Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Bulletin of the Fisheries Research Board of Canada, 167, 1–310. URL: https://repository.oceanbestpractices.org/handle/11329/1994

Stronkhorst, J., Levering, A., Hendriksen, G., Rangel-Buitrago, N. and Appelquist, L. R. (2018). Regional coastal erosion assessment based on global open access data: a case study for Colombia. Journal of Coastal Conservation, 22(4), 787–798. URL: https://link.springer.com/article/10.1007/s11852-018-0609-x

Tambaru, R., BURHANUDDIN, A. I., MASSINAI, A. and AMRAN, M. A. (2021a). Detection of marine microalgae (phytoplankton) quality to support seafood health: A case study on the west coast of South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity, 22(11). URL: https://smujo.id/biodiv/article/view/9630

Tambaru, R., Samawi, M. F. and Afriliyeni, N. S. (2021b). Levels of water fertility in coastal waters of Kuri based on phytoplankton chlorophyll-a concentration. IOP Conference Series: Earth and Environmental Science, 681(1), 12106. URL: https://iopscience.iop.org/article/10.1088/1755-1315/681/1/012106

Tomas, C. R. (1997). Identifying marine phytoplankton. Elsevier. URL: https://books.google.co.id/books?hl=id&lr=&id=8WLABHmo-K8C&oi=fnd&pg=PP1&dq=Identifying+marine+phytoplankton

Trottet, A., George, C., Drillet, G. and Lauro, F. M. (2021). Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Critical Reviews in Environmental Science and Technology, 1–42. URL: https://www.tandfonline.com/doi/full/10.1080/10643389.2021.1897372

Vadrucci, M. R., Roselli, L., Castelluccia, D., Di Festa, T., Donadei, D., Florio, M., Longo, E., D’Arpa, S., Maci, F., Ranieri, S., Spinelli, M., Pastorelli, A. and Ungaro, N. (2018). PhytoNumb3rs: An easy-to-use computer toolkit for counting microalgae by the Utermöhl method. Ecological Informatics, 46, 147–155. https://doi.org/10.1016/j.ecoinf.2018.06.007. URL: https://www.sciencedirect.com/science/article/abs/pii/S1574954118300578

Xu, L., Pan, W., Yang, G., Tang, X., Martin, R. M., Liu, G. and Zhong, C. (2021). Impact of light quality on freshwater phytoplankton community in outdoor mesocosms. Environmental Science and Pollution Research, 28(41), 58536–58548. URL: https://link.springer.com/article/10.1007/s11356-021-14812-7

Published
2023-04-30
How to Cite
Tambaru, R. (2023). Environmental Parameters And Phytoplankton Community Quality: Implications For Food Safety In Coastal Communities. Barakuda’45, 5(1), 12-23. https://doi.org/10.47685/barakuda45.v5i1.353
Section
Articles